US ERA ARCHIVE DOCUMENT

Integration of filtration and advanced oxidation: development of a liquid-phase plasma membrane reactor

Investigators: Christopher Bellona¹, Selma Mededovic Thagard², Thomas Holsen¹, and Eric Dickenson³

¹Clarkson University, Department of Civil and Environmental Engineering, Potsdam, NY ²Clarkson University, Department of Chemical and Biomolecular Engineering, Potsdam, NY ³Southern Nevada Water Authority, Henderson, NV

ICOSSE-EPA Innovative Small Water Systems Project Review, Cincinnati, OH

Wallace H. Coulter School of Engineering

Team Background

Clarkson University is a small 'high research activity' engineering college located in Potsdam, NY

Chris Bellona – Assistant Professor in the Department of Civil and Environmental Engineering (CEE). Engaged in membrane related research

Selma Mededovic – Assistant Professor in the Department of Chemical and Biomolecular Engineering. Engaged in electrical discharge related research

Thomas Holsen – Professor in the CEE Department. Engaged in fate and transport research regarding legacy and emerging contaminants

The Southern Nevada Water Authority (SNWA) is is a cooperative agency formed in 1991 to address Southern Nevada's unique water needs on a regional basis. SNWA manages local water resources comprised of eight member organizations

Eric Dickenson – Project Manager for the Applied Research and Development Center at SNWA. Engaged in research on the treatability of organic and inorganic contaminants in water and wastewater treatment systems

Objectives & Approach

Objectives:

- To develop an innovative technology to potentially replace conventional treatment processes for small water systems
- Simultaneously remove particles, pathogens and bulk organic carbon, and degrade regulated and unregulated organic contaminants
- Demonstrate technology at a small utility

• Approach:

 Integrate ceramic membranes with plasma advanced oxidation generated with a novel electrode material

Project Background

What is plasma?

"Plasma is a collection of free charged particles moving in random direction that is, on average, electrically neutral." (Lieberman and Lichtenberg, 1994)

Main plasma species: electrons, ions, atoms, radicals and neutral molecules

	Thermal	Non-thermal	
Temperatur e	$T_i \approx T_e \approx T_g$ $T_e > 10^4 \text{ K}$	T_e >> T_g T_e > T_i > T_g T_e 10 ⁴ K, T_g ~room temp.	

 T_i =Ion temp.

T_e=Electron temp.

T_g=Gas temp.

Liquid-phase Plasmas

High Voltage Power Supply System

HVAC Power Supply 60 Hz, 0-100 kVRotating Spark Gap HVAC = 0-100 kV, 0-28 mA R1 = 333 k Ω D1 = 60 kV, 12 A C1 = 2000 pF Frequency = 60 Hz

Plasma Reactor

Pulse Discharge

- Pulsed plasma prevents energy being wasted on the acceleration of ions

Project Background

 Project was initiated as an internal collaboration to integrate membrane filtration with advanced oxidation

Project Overview

• Task 1:

 Selection of contaminants for technology development and demonstration

• Task 2:

- Evaluate and optimize the plasma system at the benchscale
- Develop and evaluate the integrated membrane/plasma system at the bench-scale

• Task 3:

Development of prototype for demonstration

• Task 4:

Prototype demonstration at a small utility

Current Work: Task 1 — Selection of Contaminants

Goal:

 Develop list of contaminants of concern that allows an unbiased evaluation of the developed technology

Approach:

- Screened ~260 contaminants of concern
- Binned compounds based on published reaction rates with ozone (O₃) and hydroxyl radicals (OH•)
- Selected 10 15 compounds from each bin based on likelihood of occurrence, current and future regulations, and analytical capabilities

Current Work: Task 1 — Selection of Contaminants

Reacts@quickly@	vith®o₃®and®OH•	Reacts®lowly@vitl	h®D₃@and@quickly@with®DH•	Reacts ®lowly ®wit	:haD₃@andaOH•
Compound	Туре	Compound	Туре	Compound	Туре
Carbamazepine	Pharmaceutical	Diazepam	Pharmaceutical	Chloroacetic 3 Acid	Regulated DBP
Sulfamethoazole	Pharmaceutical	Iopromide	X-rayItontrastIagent	Chloroform	Regulated DBP
Trimethoprim	Pharmaceutical	Ibuprofen	Pharmaceutical	TCEP	Flame@etardant
Caffeine	Stimulant	1,4-dioxane	Industrialuse	PFOA	Industrial@use,@CCL3
Fluoxetine	Pharmaceutical	Meprobamate	Pharmaceutical	PFOS	Industrial@use,@CCL3
Naproxen	Pharmaceutical	Dilantin	Pharmaceutical	PFHxA	Industrialause
Triclosan	Pharmaceutical	DEET	Insecticide	PFHxS	Industrialuse
Acetaminophen	Pharmaceutical	Primidone	Pharmaceutical	PFBA	Industrialause
Triclocarban	Pharmaceutical	Simazine	Herbicide	PFBS	IndustrialTuse
Atenolol	Pharmaceutical	Atrazine	Herbicide	NDMA	DBP, CCL3
Gemfibrozil	Pharmaceutical	MTBE	CCL3	Sucralose	Artificial\(3 \)weetener
Bisphenol-A	EDC			Musk ® Ketone	Fragrance
17 b-Estradiol	EDC,©CCL3			Diatrizoate	X-ray@tontrast@agent
17a-Ethinylestradiol	EDC,©CCL3			Trichloronitromethane (chloropicrin)	DBP
Nitrobenzene	EDC,ECCL3				

Current Work: Task 2 – Plasma Optimization

- Conventional plasma reactors are relatively inefficient for contaminant degradation
- Currently working through an experimental matrix to identify main parameters controlling plasma efficiency:
 - Reactor type and geometry
 - Voltage, frequency and polarity
 - Aqueous chemistry

Experimental Matrix

Factor	Selected parameter	
Compound	Bisphenol A, nitrobenzene, DEET	
Voltage	39, 28 and 20 kV	
Initial compound concentration	5, 2.5, 1, 0.5 mg/L	
Solution conductivity	150, 250, 350, 450, and 550 μS/cm	
Flow rate in the recirculation loop	1 and 1.5 L/min	
Reactor type	Standard point-to-plane reactor Hybrid series reactor	
Reactor diameter	4.5, 7.4 and 11.2 cm	
Grounded electrode plate area	1.75, 3.15, 4.5 and 7.8 cm ²	

Current Work: Task 2 – Plasma Optimization – Bisphenol A

<u>Voltage</u> <u>Geometry</u>

Initial BPA concentration

Conductivity

Current Work: Task 2 – Plasma Optimization

Degradation of Bisphenol-A

Ongoing and Future Work

- Evaluate optimized plasma system with a suite of contaminants at environmentally relevant concentrations
- Integrate plasma system with ceramic membrane and evaluate performance with different source waters and membrane types
- Develop prototype system

Current Work: Task 3 – Prototype Development

An automated ceramic membrane system has been built

Future Work: Task 4 – Prototype Demonstration

- System to be demonstrated at Big Bend Water District water treatment plant in Laughlin, NV
- Serves 8,800 customers
- Source water impacted by upstream wastewater discharges
- Provides a challenging source water for demonstration testing

Acknowledgements

Wallace H. Coulter School of Engineering

- Chao Zhang
- Fei Dai
- Gunnar Stratton

 USEPA for funding the project under the Science to Achieve Results (STAR) program